1、设平面的法向量是n,Q是这平面内任意一点,则空间点P到这个平面的距离:d=|QP·n|/|n|,这里QP表示以Q为起点、P为终点的向量。距离d是向量QP在法向量n上投影的绝对值,即d=|PijQP|=||QP|*cos|=||n|*|QP|*cos|/|n|==|QP·n|/|n|。
2、设直线的方向向量是s,Q是这直线上任意一点,则空间点P转这直线的距离:d=|QP×s|/|s|,这里QP表示以Q为起点、P为终点的向量。距离d是以向量QP、向量s为邻边的平行四边形s边上的高,所以d=|QP|*sin=[|s|*|QP|*sin]/|s|=|QP×s|/|s|。
关键词: 空间 平面 距离 公式